
Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 6.3/16/25/50V

Part Number		Dir	nensions (n	nm)		
Part Number	L	W	T	е	g min.	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1		0.7	
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7		
GRM21B			1.25 ±0.1			
GRM319	2 2 10 15	1.6 ±0.15	0.85 ±0.1		1.5	
GRM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		1	

^{*} Bulk Case : $1.6 \pm 0.07(L) \times 0.8 \pm 0.07(W) \times 0.8 \pm 0.07(T)$

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM155R61A683KA01	X5R (EIA)	10	68000pF±10%	1.0	0.5	0.50
GRM155R61A104KA01	X5R (EIA)	10	0.1μF±10%	1.0	0.5	0.50
GRM188R61A334KA61	X5R (EIA)	10	0.33 μF±10%	1.6	0.8	0.80
GRM188R61A474KA61	X5R (EIA)	10	0.47μF±10%	1.6	0.8	0.80
GRM188R61A684KA61	X5R (EIA)	10	0.68μF±10%	1.6	0.8	0.80
GRM188R61A105KA61	X5R (EIA)	10	1μF ±10%	1.6	0.8	0.80
GRM188R60J105KA01	X5R (EIA)	6.3	1μF ±10%	1.6	0.8	0.80
GRM219R61A105KC01	X5R (EIA)	10	1μF ±10%	2.0	1.25	0.90
GRM21BR61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	1.25
GRM219R60J155KC01	X5R (EIA)	6.3	1.5μF ±10%	2.0	1.25	0.90
GRM21BR60J225KA01	X5R (EIA)	6.3	2.2μF ±10%	2.0	1.25	1.25
GRM21BR60J335KA11	X5R (EIA)	6.3	3.3μF ±10%	2.0	1.25	1.25
GRM21BR60J475KA11	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	1.25
GRM319R61A225KC01	X5R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM31XR61A335KC12	X5R (EIA)	10	3.3μF ±10%	3.2	1.6	1.30
GRM31CR61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	1.60
GRM31MR60J475KC11	X5R (EIA)	6.3	4.7μF ±10%	3.2	1.6	1.15
GRM31CR61A106KA01	X5R (EIA)	10	10μF ±10%	3.2	1.6	1.60
GRM31CR60J106KA01	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	1.60
GRM31CR60J226ME20	X5R (EIA)	6.3	22μF ±20%	3.2	1.6	1.60
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.2	2.5	2.50
GRM55DR61H106KA01	X5R (EIA)	50	10μF ±10%	5.7	5.0	2.00
GRM15XR71H221KA86	X7R (EIA)	50	220pF±10%	1.0	0.5	0.25
GRM155R71H221KA01	X7R (EIA)	50	220pF±10%	1.0	0.5	0.50
GRM15XR71H331KA86	X7R (EIA)	50	330pF±10%	1.0	0.5	0.25
GRM155R71H331KA01	X7R (EIA)	50	330pF±10%	1.0	0.5	0.50
GRM15XR71H471KA86	X7R (EIA)	50	470pF±10%	1.0	0.5	0.25
GRM155R71H471KA01	X7R (EIA)	50	470pF±10%	1.0	0.5	0.50
GRM15XR71H681KA86	X7R (EIA)	50	680pF±10%	1.0	0.5	0.25
GRM155R71H681KA01	X7R (EIA)	50	680pF±10%	1.0	0.5	0.50
GRM15XR71H102KA86	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.25
GRM155R71H102KA01	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.50
GRM15XR71H152KA86	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.25
GRM155R71H152KA01	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.50
GRM155R71H222KA01	X7R (EIA)	50	2200pF±10%	1.0	0.5	0.50

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness 1 (mm)
GRM155R71H332KA01	X7R (EIA)	50	3300pF±10%	1.0	0.5	0.50
GRM155R71H472KA01	X7R (EIA)	50	4700pF±10%	1.0	0.5	0.50
GRM15XR71E182KA86	X7R (EIA)	25	1800pF±10%	1.0	0.5	0.25
GRM15XR71E222KA86	X7R (EIA)	25	2200pF±10%	1.0	0.5	0.25
GRM155R71E682KA01	X7R (EIA)	25	6800pF±10%	1.0	0.5	0.50
GRM155R71E103KA01	X7R (EIA)	25	10000pF±10%	1.0	0.5	0.50
GRM15XR71C332KA86	X7R (EIA)	16	3300pF±10%	1.0	0.5	0.25
GRM15XR71C472KA86	X7R (EIA)	16	4700pF±10%	1.0	0.5	0.25
GRM15XR71C682KA86	X7R (EIA)	16	6800pF±10%	1.0	0.5	0.25
GRM155R71C153KA01	X7R (EIA)	16	15000pF±10%	1.0	0.5	0.50
GRM155R71C223KA01	X7R (EIA)	16	22000pF±10%	1.0	0.5	0.50
GRM155R71A333KA01	X7R (EIA)	10	33000pF±10%	1.0	0.5	0.50
GRM155R71A473KA01	X7R (EIA)	10	47000pF±10%	1.0	0.5	0.50
GRM188R71H221KA01	X7R (EIA)	50	220pF±10%	1.6	0.8	0.80
GRM188R71H331KA01	X7R (EIA)	50	330pF±10%	1.6	0.8	0.80
GRM188R71H471KA01	X7R (EIA)	50	470pF±10%	1.6	0.8	0.80
GRM188R71H681KA01	X7R (EIA)	50	680pF±10%	1.6	0.8	0.80
GRM188R71H102KA01	X7R (EIA)	50	1000pF±10%	1.6	0.8	0.80
GRM188R71H152KA01	X7R (EIA)	50	1500pF±10%	1.6	0.8	0.80
GRM188R71H222KA01	X7R (EIA)	50	2200pF±10%	1.6	0.8	0.80
GRM188R71H332KA01	X7R (EIA)	50	3300pF±10%	1.6	0.8	0.80
GRM188R71H472KA01	X7R (EIA)	50	4700pF±10%	1.6	0.8	0.80
GRM188R71H682KA01	X7R (EIA)	50	6800pF±10%	1.6	0.8	0.80
GRM188R71H103KA01	X7R (EIA)	50	10000pF±10%	1.6	0.8	0.80
GRM188R71H153KA01	X7R (EIA)	50	15000pF±10%	1.6	0.8	0.80
GRM188R71H223KA01	X7R (EIA)	50	22000pF±10%	1.6	0.8	0.80
GRM188R71E333KA01	X7R (EIA)	25	33000pF±10%	1.6	0.8	0.80
GRM188R71E473KA01	X7R (EIA)	25	47000pF±10%	1.6	0.8	0.80
GRM188R71E683KA01	X7R (EIA)	25	68000pF±10%	1.6	0.8	0.80
GRM188R71E104KA01	X7R (EIA)	25	0.1μF±10%	1.6	0.8	0.80
GRM188R71C104KA01	X7R (EIA)	16	0.1μF±10%	1.6	0.8	0.80
GRM188R71A154KA01	X7R (EIA)	10	0.15μF±10%	1.6	0.8	0.80
GRM188R71A224KA01	X7R (EIA)	10	22000pF±10%	1.6	0.8	0.80
GRM219R71H333KA01	X7R (EIA)	50	33000pF±10%	2.0	1.25	0.90
GRM21BR71H473KA01	X7R (EIA)	50	47000pF±10%	2.0	1.25	1.25
GRM21BR71H683KA01	X7R (EIA)	50	68000pF±10%	2.0	1.25	1.25
GRM21BR71H104KA01	X7R (EIA)	50	0.1μF±10%	2.0	1.25	1.25
GRM21BR71H154KA01	X7R (EIA)	50	0.15μF±10%	2.0	1.25	1.25
GRM21BR71H224KA01	X7R (EIA)	50	22000pF±10%	2.0	1.25	1.25
GRM21BR71E104KA01	X7R (EIA)	25	0.1μF±10%	2.0	1.25	1.25
GRM21BR71E154KA01	X7R (EIA)	25	0.15μF±10%	2.0	1.25	1.25
GRM219R71E224KC01	X7R (EIA)	25	22000pF±10%	2.0	1.25	0.90
GRM21BR71E334KC01	X7R (EIA)	25	0.33 μF±10%	2.0	1.25	1.25
GRM21BR71E474KC01	X7R (EIA)	25	0.47μF±10%	2.0	1.25	1.25
GRM219R71C474KC01	X7R (EIA)	16	0.47μF±10%	2.0	1.25	0.90
GRM219R71C684KC01	X7R (EIA)	16	0.68μF±10%	2.0	1.25	0.90
GRM21BR71C105KA01	X7R (EIA)	16	1μF ±10%	2.0	1.25	1.25
GRM319R71H334KA01	X7R (EIA)	50	0.33 μF±10%	3.2	1.6	0.90
GRM31MR71H474KA01	X7R (EIA)	50	$0.47 \mu F \pm 10\%$	3.2	1.6	1.15
GRM319R71E684KC01	X7R (EIA)	25	0.68μF±10%	3.2	1.6	0.90
GRM31MR71E105KC01	X7R (EIA)	25	1μF ±10%	3.2	1.6	1.15
GRM319R71C105KC11	X7R (EIA)	16	1μF ±10%	3.2	1.6	0.90
GRM31MR71C155KC11	X7R (EIA)	16	1.5μF ±10%	3.2	1.6	1.15
GRM31MR71C225KA35	X7R (EIA)	16	2.2μF ±10%	3.2	1.6	1.15
	X7R (EIA)	1	1μF ±10%		1	0.90

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM319R71A225KA01	X7R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF±10%	3.2	2.5	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1μF ±10%	3.2	2.5	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.2	2.5	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.2	2.5	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.2	2.5	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.2	2.5	1.80
GRM43ER71H225KA01	X7R (EIA)	50	2.2μF ±10%	4.5	3.2	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1μF ±10%	5.7	5.0	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5μF ±10%	5.7	5.0	1.80
GRM155F51H222ZA01	Y5V (EIA)	50	2200pF +80%, -20%	1.0	0.5	0.50
GRM155F51H472ZA01	Y5V (EIA)	50	4700pF +80%, -20%	1.0	0.5	0.50
GRM155F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.0	0.5	0.50
GRM155F51E223ZA01	Y5V (EIA)	25	22000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C473ZA01	Y5V (EIA)	16	47000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C104ZA01	Y5V (EIA)	16	10000pF +80%, -20%	1.0	0.5	0.50
GRM188F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H223ZA01	Y5V (EIA)	50	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H473ZA01	Y5V (EIA)	50	47000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51E104ZA01	Y5V (EIA)	25	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C224ZA01	Y5V (EIA)	16	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C474ZA01		16	0.47µF +80%, -20%	1.6	0.8	0.80
GRM188F51A474ZC01	Y5V (EIA)	10	0.47μF +80%, -20% 0.47μF +80%, -20%	1.6	0.8	0.80
	Y5V (EIA)		1μF +80%, -20%	1.6	0.8	0.80
GRM188F51A105ZA01	Y5V (EIA)	10	' '			
GRM219F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51H224ZA01 GRM219F51E224ZA01	Y5V (EIA)	50	22000pF +80%, -20%	2.0	1.25	1.25
	Y5V (EIA)	25	22000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51E474ZA01	Y5V (EIA)	25	0.47μF +80%, -20%	2.0	1.25	1.25
GRM219F51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51E225ZA01	Y5V (EIA)	25	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	2.0	1.25	1.25
GRM21BF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	2.0	1.25	1.25
GRM31MF51H474ZA01	Y5V (EIA)	50	0.47μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	3.2	1.6	0.90
GRM31MF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	3.2	1.6	1.15
GRM31MF51C475ZA12	Y5V (EIA)	16	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	3.2	1.6	0.90
GRM31MF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	3.2	1.6	1.15
GRM31MF51A106ZA01	Y5V (EIA)	10	10μF +80%, -20%	3.2	1.6	1.15
GRM31MF50J106ZA01	Y5V (EIA)	6.3	10μF +80%, -20%	3.2	1.6	1.15
GRM32RF51H105ZA01	Y5V (EIA)	50	1μF +80%, -20%	3.2	2.5	1.80
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	2.5	0.90
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80%, -20%	3.2	2.5	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80%, -20%	3.2	2.5	1.35
GRM188E41H103MA01	Z5U (EIA)	50	10000pF±20%	1.6	0.8	0.80
GRM188E41H223MA01	Z5U (EIA)	50	22000pF±20%	1.6	0.8	0.80
GRM216E41H473MA01	Z5U (EIA)	50	47000pF±20%	2.0	1.25	0.60
GRM219E41H104MA01	Z5U (EIA)	50	10000pF±20%	2.0	1.25	0.90
GRM319E41H224MA01	Z5U (EIA)	50	22000pF±20%	3.2	1.6	0.90

■ Specifications and Test Methods

		Specifi	ications				
No	. Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	–55 to +125°C	B1, B3, F1: -25°C to +85°C R1, R7: -55°C to +125°C E4: +10°C to +85°C F5: -30°C to +85°C	Reference Temperature : 25° C (2Δ , 3Δ , 4Δ , B1, B3, F1, R1 : 20° C)			
2	Rated Voltage	See the previous pages		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{0-p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions	3	Using calipers			
Shee 5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistance	C≤0.047μF : More than 10,000 C>0.047μF : 500Ω • F	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20°C/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance		The capacitance/D.F. should be measured at 20°C/25°C at the			
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≧0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.				

No bias	\square	Continued fr	om the prec	eding page.						
No bias				·	ications	tions				
Capacitance	No.	lte	em		High Dielectric Type			Test Me	ethod	
Solution			No bias	T	(-25°C to +85°C) R1, R7: Within±15%	each specified temp. stage. (1)Temperature Compensating Type The temperature coefficient is determind using the capacitar measured in step 3 as a reference. When cycling the temperature sequentially from step 1 throu 5 (5C: +25°C to +125°C/ΔC: +20°C to +125°C: other temporents: +25°C to +85°C/+20°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1. The capacitance drift is caluculated by dividing the difference between the maximum and minimum measured values in the			using the capacitance y from step 1 through 25°C: other temp. the capacitance or the temperature ble A-1. iding the differences issured values in the	
Solution			F00/ 6		D4 W/4: 140/ 000/	Ste	ep	Т	emperat	ure (°C)
Voltage Voltage Voltage F1 : Within ±30/–95% F2 = -55±3 (for ∆C)/–25±3 (for other TC 3 Reference Temperature±2 4 125±3 (for ∆C)/±25±3 (for other TC 5 Reference Temperature±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the 20° value over the temperature ranges shown in the table sho be within the specifications of each temp. stage. In case of applying voltage, the capacitance change show measured after 1 mein. with applying voltage in equilibration of each temp. stage. In case of applying voltage, the capacitance change show measured after 1 mein. with applying voltage in equilibration of each temp. stage. Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. In case of applying voltage, the capacitance change show measured after 1 mein. with applying voltage in equilibration of each temp. stage. Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 2 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 1 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 2 Step Temperature (*C) Applying Voltage in equilibration of each temp. stage. 3 Reference Temperature (*C) Applying Voltage in equi		4U.com					•		•	• •
Capacitance							2 -			-
Capacitance Capacitance Characteristics Capacitance Capacitance Capacitance Characteristics Capacitance Characteristics Capacitance			Voltage			3				
Capacitance Temperature Capacitance										·
Capacitance Characteristics Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 11x/25V *Initial measurement for high dielectric constant type Perform a heat treatment at 150-V0-10°C for one hour and then set for 48±4 hours at 150-V0-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement. *No removal of the terminations or other defect should occur *Adhesive Strength of Termination *Adhesive Strength of Termination *Adhesive Strength of Termination *Fig. 1a is missing a metectic solder. Then apply 10N* force in parallel with the test jig (griass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (glass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (glass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (glass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (glass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (glass epoxy board) she fig. 1a. 25 missing an eutectic solder. Then apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N* force in parallel with the test jig (and 10N apply 10N a					/					
The ranges of capacitance change compared with the 20' value over the temperature ranges shown in the table sho be within the specified ranges.* In case of applying voltage, the capacitance change show measured after 1 more min. with applying voltage in equilibration of each temp. stage. Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V *Initial measurement for high dielectric constant type Perform a heat treatment at 150+00/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement. Perform the initial measurement. No removal of the terminations or other defect should occur Adhesive Strength of Termination Adhesive Strength of Termination Adhesive Strength of Fig. 1a Adhesive Strength of Fig. 1a Fig. 1a Fig. 1a The ranges of capacitance change compared with the 20'value over the temperature ranges shown in the table sho be within the specified ranges.* In case of applying voltage, the capacitance change shown measured after 1 more min, with applying voltage in equilibration of each temp. stage. Step Temperature (*C) 1 Reference Temperature* 2 2-25±3 (for R1, R7, R6) 2 2-25±3 (for R1, R7) 85±3 (for R1, R7)										nperature±2
Vithin ±0.2% or ±0.05pF (Whichever is larger.)	9	Temperature				The ranges of capacitance change compared with the 20% value over the temperature ranges shown in the table sho be within the specified ranges.* In case of applying voltage, the capacitance change shoul measured after 1 more min. with applying voltage in equilibration of each temp. stage.			in the table should ce change should be voltage in	
No bias Capacitance Within ±0.2% or ±0.05pF (Whichever is larger.)						Step	•)	Applying Voltage (V)
No bias 2						_ 1	Reference	e Tempere	ture±2	
#Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement. Perform the initial measurement Perform the initi			•	(Whichever is larger.)		2	-25±3	5±3 (for B1, B3, F1)		No bias
Perform a heat treatment at 150+0/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement. No removal of the terminations or other defect should occur Adhesive Strength of Termination Adhesive Strength of Termination Adhesive Strength of Termination Perform a heat treatment at 150+0/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement. Solder the capacitor to the test jig (glass epoxy board) shore in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat shock *2N (GR□03), 5N (GR□15, GRM18) Type					*Initial measurement for high	3	Reference	e Tempere	ture±2	NO DIAS
at room temperature. Perform the initial measurement. No removal of the terminations or other defect should occur					Perform a heat treatment at 150+0/-10°C for one hour	4	85±3 (±3 (for B1, B3, R6		
Perform the initial measurement. Perform the initial measurement. 6 -55±3 (for R1) -25±3 (for R1) 50% of the ray voltage						5	Reference	e Tempere	ture±2	
No removal of the terminations or other defect should occur Solder the capacitor to the test jig (glass epoxy board) should be conducted with care so that soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects such as heat shoot and should be conducted with care so that soldering is uniform and free of defects su					Perform the initial	6		, ,		50% of the rated
No removal of the terminations or other defect should occur Solder the capacitor to the test jig (glass epoxy board) shore in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat shock *2N (GR□03), 5N (GR□15, GRM18) Adhesive Strength of Termination						7	Reference	e Tempere	ture±2	voltage
Fig. 1a using an eutectic solder. Then apply 10N⁵ force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat shock *2N (GR□03), 5N (GR□15, GRM18) Type						8				
Adhesive Strength of Termination Adhesive Strength of Termination Adhesive Strength of Termination Fig. 1a Type a b c GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM31 2.2 5.0 2.9 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7				No removal of the terminations	nations or other defect should occur		capacitor to ng an eutec h the test jig ing should b nod and sho s uniform an	o the test jig tic solder. T g for 10±1 s be done eith ould be con ad free of do	(glass e Then app sec. ner with a ducted w efects su	oly 10N* force in an iron or using the with care so that the
Adhesive Strength of Termination Adhesive Strength of Termination Adhesive Strength of Termination Fig. 1a Type a b c GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM31 2.2 5.0 2.9 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7					4 [4]					(in mm)
of Termination of R□03 of R□03 of R□15 of RM18 of RM18 of RM21 of RM21 of RM31 of RM31 of RM32 of RM32 of RM32 of RM32 of RM43 of RM4	10		_		* 	Tyı	ре	а	b	<u> </u>
Solder resist GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 Baked electrode or copper foil GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7	.0	of Termin	ation		0					
Baked electrode or copper foil GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM32 3.5 7.0 3.7						GR□15	5	0.4	1.5	0.5
copper foil GRM31 2.2 5.0 2.0 Fig. 1a GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7					~ ~~					
Fig. 1a Fig. 1										
GRM43 3.5 7.0 3.7					copper toil					
				Fig. 1a						
GRM55 4.5 8.0 5.6						_GRM55	j	4.5	8.0	5.6

Continued on the following page.

		Specifi	cations				
No.	Item	Temperature Compensating Type	High Dielectric Type		Test Method		
	Appearance	No defects or abnormalities					
	Capacitance	Within the specified tolerance					
11 Vibration Resistance	on ance Q/D.F. 30pF and over : Q≥1000 W.Y. W.Y. W.Y. W.Y. W.Y. W.Y. W.Y. W		[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3µF) : 0.1max. (C≥3.3µF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1µF) : 0.09max. (C≥0.1µF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	Solder the capacitor on the test jig (glass epoxy board) is same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic having a total amplitude of 1.5mm, the frequency being uniformly between the approximate limits of 10 and 55H; frequency range, from 10 to 55Hz and return to 10Hz, st be traversed in approximately 1 minute. This motion sho applied for a period of 2 hours in each 3 mutually perpendirections (total of 6 hours).			
		No crack or marked defect shou	in Fig. 2a using a direction shown	citor on the test jig (glas an eutectic solder. Then in Fig. 3a for 5±1sec. T	apply a force in the he soldering should be		
12 Deflection						ow method and should ering is uniform and free	
		R230 Capacitance n 45 Fig. 3a	Type GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	a 0.3 0 0.4 1 1.0 3 1.2 4 2.2 5 2.2 5 3.5 7 4.5 8	mm (GR□03/15:t:0.8mm) b		
13 Soldera Termin	ability of ation	75% of the terminations are to be soldered evenly and continuously		rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2±0.5 seconds at 230±5℃.			
		The measured and observed ch specifications in the following ta					
	Appearance	No defects or abnormalities	I	_			
	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Immerse the cap	acitor at 120 to 150℃ fo pacitor in an eutectic sol nds. Set at room tempe	der solution at 270±5℃	
Resistand to Soldering Heat		30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≧0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	(temperature compensating tyoe) or 48±4 hours (high dielect constant type), then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement. •Preheating for GRM32/43/55 Step Temperature Time 1 100°C to 120°C 1 min.			
	I.R.	More than $10{,}000{\rm M}\Omega$ or 500Ω	I	2	170℃ to 200℃	1 min.	
	Dielectric	No defects	- i (willionever is smaller)				

ı	_
ı	\ .I
	_ \ Ⅱ

		Specifi	cations						
No. Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method					
		The measured and observed chapecifications in the following ta							
	Appearance	No defects or abnormalities							
	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments shown in the following table.					
			[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max.	Set for 24±2 he hours (high die measure.			0		
15 Temperature		30pF and over : Q≧1000	W.V.: 6.3V/4V	Step	1	2	3	4	
Cycle	Q/D.F.	30pF and below : Q≥400+20C	: 0.05max. (C<3.3µF) : 0.1max. (C≧3.3µF) [F1, F5]	Temp. (℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.	
		C : Nominal Capacitance (pF)	W.V. : 25Vmin.	Time (min.)	30±3	2 to 3	30±3	2 to 3	
-	I.R. More than 10,000MΩ or 500Ω •		: 0.05max. (C<0.1μF) : 0.09max. (C≧0.1μF) W.V. : 16V/10V : 0.125max. W.V. : 6.3V : 0.15max.	Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement.					
		Wore than 10,000Ws2 of 500s2	_						
	Dielectric Strength	No defects							
		The measured and observed ch specifications in the following ta							
	Appearance	No defects or abnormalities							
	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5 : Within ±30%						
Humidity 16 (Steady State)		•	: Within ±12.5%	Set the capacit 500±12 hours. Remove and stype) or 48±4 hemperature, the	et for 24±2 hor nours (high die	urs (temp	perature compe	ensating	

			Specifi	cations	
No	. Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta	•	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10Vmax.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature
17 Shee	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max. (C<3.3μF) : 0.125max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max. (C<0.1μF) : 0.125max. (C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	compensating type) or 48±4 hours (high dielectric constant type) at room temprature, then muasure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than $500 \mathrm{M}\Omega$ or $25 \Omega \bullet \mathrm{F}$ (V	Vhichever is smaller)	
			The measured and observed chapecifications in the following ta	-	
		Appearance	No defects or abnormalities		
		Capacitance Within ±3% or ±0.3pF Change (Whichever is larger)		B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [Exept 10Vmax. and. C≥1.0µF] F1, F5: Within +30/-40% [10Vmax. and. C≥1.0µF]	Apply 200% of the rated voltage at the maximum operating temperature ±3°c for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.04max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max.(C<3.3μF) : 0.125max.(C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max.(C<0.1μF) : 0.125max.(C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	The charge/discharge current is less than 50mA. Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun operating temperature ±3°C for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000M Ω or 50 Ω •F (Whichever is smaller)	

Table A-1

	Nominal Values (ppm/°C)*1	Capacitance Change from 25℃ (%)							
Char.		-55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44		
	-750±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*1}Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ∆C)/85°C (for other TC).

Sheet4U.com		Capacitance Change from 20℃ (%)						
Char.	Nominal Values (ppm/°C)*2	_	-55 -25		-25	-10		
	_	Max.	Min.	Max.	Min.	Max.	Min.	
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75	
2P	-150± 60	_	_	1.32	0.41	0.88	0.27	
3P	-150±120	_	_	1.65	0.14	1.10	0.09	
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30	
2R	-220± 60	_	_	1.70	0.72	1.13	0.48	
3R	-220±120	_	_	2.03	0.45	1.35	0.30	
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09	
2S	-330± 60	_	_	2.30	1.22	1.54	0.81	
3S	-330±120	_	_	2.63	0.95	1.76	0.63	
4S	-330±250	_	_	3.35	0.36	2.23	0.24	
2T	-470± 60	_	_	3.07	1.85	2.05	1.23	
3T	-470±120	_	_	3.40	1.58	2.27	1.05	
4T	-470±250	_	_	4.12	0.99	2.74	0.66	
3U	-750±120	_	_	4.94	2.84	3.29	1.89	
4U	-750±250	_	_	5.65	2.25	3.77	1.50	

^{*2}Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for Δ C)/85°C (for other TC).

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 100V

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R72A222KD01	X7R (EIA)	100	2200pF±10%	1.6	0.8	0.80
GRM188R72A332KD01	X7R (EIA)	100	3300pF±10%	1.6	0.8	0.80
GRM219R72A472KA01	X7R (EIA)	100	4700pF±10%	2.0	1.25	0.90
GRM219R72A682KA01	X7R (EIA)	100	6800pF±10%	2.0	1.25	0.90
GRM21BR72A103KA01	X7R (EIA)	100	10000pF±10%	2.0	1.25	1.25
GRM31MR72A333KA01	X7R (EIA)	100	33000pF±10%	3.2	1.6	1.15
GRM31MR72A473KA01	X7R (EIA)	100	47000pF±10%	3.2	1.6	1.15
GRM32NR72A683KA01	X7R (EIA)	100	68000pF±10%	3.2	2.5	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.1μF±10%	3.2	2.5	1.35
GRM43RR72A154KA01	X7R (EIA)	100	0.15μF±10%	4.5	3.2	1.80
GRM43RR72A224KA01	X7R (EIA)	100	22000pF±10%	4.5	3.2	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47μF±10%	4.5	3.2	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1μF ±10%	5.7	5.0	2.00
GRM188F52A472ZD01	Y5V (EIA)	100	4700pF +80%, -20%	1.6	0.8	0.80
GRM32NF52A104ZA01	Y5V (EIA)	100	10000pF +80%, -20%	3.2	2.5	1.35
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47μF +80%, -20%	5.7	5.0	1.80

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

Thin Layer Large-Capacitance type

Part Number		Dime	nsions (mi	m)		
rait ivuilibei	L	W	T	e min.	g min.	_
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	S
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	2 5 2 5
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5	2020
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	e g e
GRM31M			1.15 ±0.1	0.3 10 0.6	1.5	 -
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM32D	3.2 ±0.3	2.5 +0.2	2.0 ±0.2	0.3	1.0	
GRM32E	3.2 ±0.3	2.5 ±0.2	2.5 ±0.2	0.3	1.0	
GRM43D			2.0 ±0.2			T T
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0	<u> </u>
GRM43S			2.8 ±0.2			L W
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0	

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF±10%	1.0	0.5	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	22000pF±10%	1.0	0.5	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33 μF±10%	1.0	0.5	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF±10%	1.0	0.5	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.6	0.8	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.90
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.0	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.0	1.25	1.25
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.2	2.5	2.00
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.2	2.5	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.5	3.2	2.80
GRM55FR60J107KA01	X5R (EIA)	6.3	100μF ±10%	5.7	5.0	3.20
GRM55FR60J107MA01	X5R (EIA)	6.3	100μF ±20%	5.7	5.0	3.20
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10μF +80%, -20%	2.0	1.25	1.25

No.	Ite	em		Specifications		Test Metho	od			
1	Operating Tempera Range		B1, B3, F1: −25°C to +8 R6: −55°C to +85°C F5: −30°C to +85°C C8: −55°C to +105°C, C			Reference Temperature : 25°C (B1, B3, F1 : 20°C)				
2	Rated Vo	ltage	See the previous pages		The rated voltage is defined as the maximum voltage variety may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} whichever is larger, should be maintained within the ravoltage range.					
3	Appearar	nce	No defects or abnormali	ties	Visual insp	pection				
4	Dimensio	ns	Within the specified dime	ensions	Using calip	pers				
5	Dielectric	Strength	No defects or abnormali	ties	is applied	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	4U.com Insulation Resistance		More than 50Ω • F		The insular	neasured with a DC voltage ference Temperature and charging, provided the				
			Within the specified toler	rance	•	itance should be measure are at the frequency and v				
7	Dissination Factor		*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106		Capacitance Frequency Voltage C≤10μF (10V min.)*¹ 1±0.1kHz 1.0±0.2Vrms C≤10μF (6.3V max.) 1±0.1kHz 0.5±0.1Vrms C>10μF 120±24Hz 0.5±0.1Vrms *1 However the Voltage is 0.5+/-0.1Vrms about Table items on the left side.					
8			B1, B3, R6, C7, C8 : 0.1 F1, F5 : 0.2 max.	*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106	frequency	and voltage shown in the apacitance Freque Freque 1±0.0	ency Voltage kHz 1.0±0.2Vrms kHz 0.5±0.1Vrms 24Hz 0.5±0.1Vrms			
	No bias		R6 : Within +/-15% F5 : Within +22/-82 C7 : Within +/-22%	(-25°C to +85°C))% (-25°C to +85°C) (-55°C to +85°C) 2% (-30°C to +85°C) (-55°C to +125°C) (-55°C to +105°C)	each spec The range Reference shown in t In case of measured equilibratio *GRM43 I	after 1 more min. with appoin of each temp. stage. B1/R6 0J/1A 336/476 only	compared with the he temperature ranges he specified ranges.* acitance change should be slying voltage in			
					Step 1	Temperature (°C) Reference Tempereture	Applying Voltage (\			
9	Capacitance Temperature				2	-55±3 (for R6, C7, C6 -25±3 (for B1, B3, F -30±3 (for F5)	3)/			
	Characteristics				3	Reference Tempereture	e±2 No bias			
		50% of the Rated	B1: Within +10/-30%		4	85±3 (for B1, B3, F1, R6 125±3 (for C7)/ 105±3 (for C8)/	i, F5)			
		Voltage	F1: Within +30/-95%		5	20±2				
		, ,	I .							
					6	-25±3 (for B1, F1)	50% of the rated			
					<u>6</u> 7	-25±3 (for B1, F1) 20±2	50% of the rated voltage			

Continued on the following page.

Perform a heat treatment at 150 +0/-10°C for one hour and

then set for 48±4 hours at room temperature.

Perform the initial measurement.

No	o. Item	Specifications	Test Method				
		No removal of the terminations or other defects should occur	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10+/-1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33				
10 She	Adhesive Strength of Termination	Solder resist Baked electrode or copper foil Fig. 1a	Type a b c GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65 GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6				
	Appearance Capacitance	No defects or abnormalities Within the specified tolerance	Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10).				
1	,	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).				
1:	2 Deflection	No cracking or marking defects should occur 20 50 Pressunzing speed: 1.0mm/sec. Pressunze R230 Capacitance meter 45 45	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5+/-1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Document				
		Fig.3a	GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5 GRM18 1.0 3.0 1.2 GRM21 1.2 4.0 1.65				
			GRM31 2.2 5.0 2.0 GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7 GRM55 4.5 8.0 5.6 (in mm)				
1:	Solderability of Termination	75% of the terminations is to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120° C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for $2+/-0.5$ seconds at $230+/-5^\circ$ C.				

No.	Ite	em	Specifications		Tes	st Metho	d				
		Appearance No defects or abnormalities Capacitance Change B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20% Q/D.F. B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20% B1, B3, R6, C7, C8 : 0.1 max.	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder solution at 270+/-5°C for 10+/-0.5 seconds. Set at room temperature for 24+/-2 hours (temperature compensating tyoe) or 48+/-4 hours (high dielectric constant type), then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and							
	Resistance	I.R.	More than 50Ω • F								
14	to Soldering Heat	Dielectric Strength	No defects	then set at roc Perform the in		our and					
				*Preheating fo	or GRM32/43/5	5					
				Step	Temp	erature	T	ime			
				1	100℃	to 120℃	1 :	min.			
				2	170℃	to 200℃	1 1	min.			
ee	4U.com	Appearance	No defects or abnormalities	Fix the capaci	tor to the supp	orting jig	in the same m	anner and			
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	Perform the fi	Fix the capacitor to the supporting jig in the same mann under the same conditions as (10). Perform the five cycles according to the four heat treatn shown in the following table.						
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Set for 24+/-	2 hours (temp	erature c	erature compensating type) or constant type) at room				
		I.R.	More than 50Ω • F	temperature, t	then measure.						
	Temperature	Dielectric	No defeate	Step	1	2	3	4			
15	Change High Temperature	Strength	No defects		Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.			
				Time (min.)	30±3	2 to 3	30±3	2 to 3			
		Appearance Capacitance	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	Perform a hea then set at roc Perform the in Apply the rate	at treatment at om temperature itial measurem d voltage at 40	150+0/— e for 48+, nent. n+/–2°C a	c constant type 10°C for one ho /-4 hours. and 90 to 95% I ge currentis les	our and			
16		Change D.F. I.R.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max. More than 12.5Ω • F		it treatment at 48+/–4 hours		10℃ for one ho temperature. P				
				MeasuremenPerform a hea	t after test at treatment at		10℃ for one ho temperature, th				
		Appearance	No defects or abnormalities				000 + / - 12 hou				
	Durability	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	hours at room	rating tempera temperature, t ischarge curre	hen mea		48+/—4			
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measu	rement						
17		I.R.	More than 25Ω • F		48+/-4 hours		10℃ for one ho temperature. P				
					it treatment at		10℃ for one ho temperature, th				